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Abstract

We consider a general Independent Component Analysis (ICA) model with non-Gaussian compo-
nents with an unknown distribution, and Gaussian measurement errors. For the error covariance
matrix, we consider the following structures: isotropic, diagonal, AR(1), and Markov simplex.
We propose a two-step estimation procedure. In the first step, the unrotated components and
loadings, and the error covariance matrix are estimated by least squares fitting of the model
covariance matrix to the data covariance matrix. In the second step, the components are rotated
to approximate independence by means of an ICA algorithm. The proposed method is a natural
generalization of ICA with isotropic Gaussian errors in which the unrotated components are ob-
tained via Principal Component Analysis. For diagonal error variance, the method is identical
to using Factor Analysis to obtain the unrotated components. We assess the performance of the
proposed method by means of Monte Carlo simulations.
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1 Introduction

The concept of Independent Component Analysis (ICA) has become popular since the 90s of the
last century. The goal of ICA is to give a best summary of a set of observed variables in terms
of a prespecified number of statistically independent (latent) components and the loadings of the
observed variables on these independent components. In the ICA literature, the independent com-
ponents are also referred to as factors or sources, and the matrix containing the loadings is also
referred to as mixing matrix. Conceptually, ICA can be seen as a fine-tuning of the well-known
Principal Component Analysis (PCA) method, in which the components are only assumed to be
uncorrelated. Applications of ICA are found in various areas. For instance, signal processing (where
it is known as Blind Source Separation), neuro-imaging, econometrics and telecommunications.

A crucial assumption in the ICA framework is that the underlying independent components
have non-Gaussian distributions. The reason for this is that with normally distributed components
uncorrelatedness and independence are equivalent, whereas for non-Gaussian components zero cor-
relation does not imply independence. Hence, ICA with Gaussian components boils down to the
PCA method, in which the components can be rotated without affecting the model fit. Contrary to
PCA, ICA has, under the assumption of non-Gaussian components, a rotationally unique solution.

We consider the case where the distribution of the components is non-Gaussian but unknown.
In this case, a large class of procedures to obtain an ICA solution uses a two-step approach. In
the first step, the unrotated components and their loadings are determined by PCA. This is also
called the prewhitening step. In the second step, a rotation is determined such that the rotated
components are approximately statistically independent. To find such a rotation, the principle of
the Central Limit Theorem in Statistics is used. A consequence of the Central Limit Theorem is
that a linear combination of two independent non-Gaussian random variables is “more Gaussian”
than the variables themselves. Hence, in order to find the underlying independent non-Gaussian
components, we must look for linear combinations of the PCA components that are “maximally non-
Gaussian”. This requires the specification of a measure of non-Gaussianity. Much used measures
are cumulants, of which kurtosis is a special case. Comon (1994a) shows that using cumulants as a
measure of non-Gaussianity results in the minimization of the mutual information in the joint pdf
of the components and their marginal pdfs. Within the class of two-step ICA procedures described
above, ICA is a fine-tuning of PCA also algebraically. For a theoretical treatment of ICA, see
Comon (1994a). For an introduction to ICA we refer to De Lathauwer, De Moor, and Vandewalle
(2000) and Comon and Chevalier (2000). See Hyvärinen, Karhunen, and Oja (2001) for detailed
discussions and practical applications of ICA.

When measurement errors are considered in the ICA framework, they are usually assumed to
be Gaussian and independent of the components. Throughout the paper, we will work under these
assumptions. In the ICA literature, errors are also referred to as noise, and ICA with errors is also
known as noisy ICA. In the signal processing literature, early works explicitly taking into account
errors include Le Bienvenu and Kopp (1983) and Le Cadre (1989). In both works, the observed
signal is equal to the sum of the latent components and an error term. Bienvenu and Kopp (1983)
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assume a known error covariance matrix, while Le Cadre (1989) considers error modeling via an
ARMA process. Signal processing applications featuring correlated errors include radar, underwater
passive listening, and general signal detection via an array of sensors.

In the two-step procedure described above, measurement errors are usually only taken into
account in the first step. For this, the error covariance matrix needs to be estimated. A commonly
used assumption is that the error covariance matrix is proportional to a known matrix (e.g. the
identity for isotropic noise). In this case, the prewhitening step can easily be modified; see e.g.
Comon and Chevalier (2000). Finding a rotation to approximately independent components is then
analogous to the error-free situation.

For an unknown but diagonal error covariance, Ikeda and Toyama (2000) propose to use Factor
Analysis (FA) in the prewhitening step instead of PCA. Here, the unrotated components and
loadings, and the error covariances are determined such that the observed covariances are best
approximated by the covariances of the model. This approximation can be performed in the least
squares sense (the Minres approach of Harman and Jones, 1966), but also other criteria have been
developed. For instance, the Maximum Likelihood approach of Jöreskog (1977) and Minimum Rank
FA of Ten Berge and Kiers (1991).

For a general unknown error covariance, Attias (1999) proposes a Maximum Likelihood frame-
work under the assumption that the components have Gaussian mixtures as distributions. The
ICA components, loadings, component density parameters and the error covariance are estimated
using an expectation-maximization algorithm. This approach has, however, some serious draw-
backs. Ikeda and Toyama (2000) mention the following. It is not clear how to choose the number
of Gaussians for modeling the component distributions. Also, the estimation procedure has large
computational costs and exhibits slow convergence unless the number of components and the num-
ber of Gaussians are small. Finally, it is not clear how to choose the number of Gaussians to model
the component distributions.

In this paper, we consider a two-step procedure for estimating an ICA model with measurement
errors, where the latter follow a known covariance model. We assume non-Gaussian components
with an unknown distribution, Gaussian errors, and independence between components and errors.
The first step of our estimation procedure yields the unrotated components and loadings, and the
error covariance by least squares fitting of the model covariance to the observed covariance. In
the second step, a rotation to approximately independent components is found using standard ICA
algorithms. In particular, we consider least squares fitting of the fourth-order cumulants in the
second step. The first step of our procedure is analogous to Minres FA, and equivalent to FA for
diagonal error covariance. For isotropic errors, our procedure is identical to using PCA to obtain
the unrotated components.

The paper is organized as follows. In Section 2 we present and discuss PCA and ICA with
measurement errors, and their estimation procedures. In Section 3, we present our estimation
procedure for ICA with errors, and discuss models for the error covariance matrix: diagonal,
autoregressive error process of order 1, and Markov simplex errors. In Section 4 we conduct a
Monte Carlo simulation study to assess the performance of our method using several different error
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covariance models, and several ICA algorithms. Finally, Section 5 contains a discussion of our
findings.

2 Model descriptions

2.1 PCA with measurement errors

Principal Component Analysis (PCA) is an exploratory data analysis tool for extracting uncorre-
lated components and their loadings from an n×m data matrix X containing n realizations of m
variables. The matrix PCA model is

X = A BT + E , (2.1)

where the columns of A (n×R) are the latent components, the columns of B (m×R) contain the
loadings of the m variables on the R components and E is a residual term, see Pearson (1901). It is
usually assumed that m ≤ n, the columns of X (variables) have mean zero and unit variance, the
columns of A (components) have mean zero and unit variance and are uncorrelated, i.e. n−1ATA =
IR. A PCA solution is found by minimizing the sum-of-squares of E and can be obtained from the
truncated Singular Value Decomposition (SVD) of X, see Eckart and Young (1936).

Note that in the PCA solution the first component explains the most variance in the data,
the second component explains the most variance in the data after the first component has been
subtracted, etcetera. This is due to the ordering of the singular values and the orthogonality of the
left- and right singular vectors.

The PCA solution is unique (up to sign changes) in this ordering if the first R singular values
are distinct. However, for any R × R orthogonal matrix Q, the solution (AQ,BQ) has the same
residuals E, since A BT = (AQ) (BQ)T . Hence, only the space of the PCA components A is
uniquely determined (ignoring the ordering). Within this space, any set of basis vectors can be
taken as components. In psychological applications of PCA, the ordering of the components is
usually not meaningful and a rotation Q is calculated which yields interpretable components, see
Browne (2001).

The introduction of measurement errors in the PCA model (2.1) is done by interpreting it
stochastically. The data matrix X is interpreted as consisting of n samples or observations of m
random variables. We denote the m× 1 vector of these m random variables as x. Analogously, the
component matrix A is interpreted as consisting of n samples of R latent random variables. We
denote the R× 1 vector of these R latent random variables as a. The stochastic model is

x = B a + e , (2.2)

where B contains the loadings and e denotes the m× 1 vector of measurement errors.
The random vector a is assumed to have a Gaussian distribution with mean zero and variance

IR, i.e. a ∼ N (0, IR). Also, it is assumed that e ∼ N (0, σ2Im), a and e are independent and
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rank(B) = R. The goal is to estimate B, σ2 and n realisations of the random vector a, which are
the rows of A (n×R).

The Maximum Likelihood estimators of A, B and σ2 are given by (e.g. Tipping and Bishop,
1999; Anderson, 2003, Section 11.3)

ÂML = UR SR (n−1S2
R − σ2 IR)−1/2 Q , (2.3)

B̂ML = VR (n−1S2
R − σ2 IR)1/2 Q , (2.4)

σ̂2
ML =

1
(m−R)n

m∑
j=R+1

s2
jj , (2.5)

where Q is any R × R orthogonal rotation matrix, UR SR VT
R is the truncated SVD of X, and

s2
jj is the j-th diagonal element of S2 (the SVD of X is denoted as U S VT ). In the absence of

measurement errors, i.e. if σ2 = 0, the estimates (2.3) and (2.4) reduce to the ordinary PCA
solution. The unrotated PCA solution is obtained by setting σ2 = 0 and Q = IR. Let the latter
be denoted by (ÂPCA,B̂PCA). Note that ÂPCAB̂T

PCA = ÂPCAQ(B̂PCAQ)T = ÂMLB̂T
ML. Hence,

the unrotated PCA solution, the rotated PCA solution, and the ML estimates in the presence
of uncorrelated and homoscedastic measurement errors, all minimize the least squares distance
between the data X and the model part ABT .

The model (2.2) and the assumptions above imply that

Cov(x) = E(xxT ) = BE(aaT ) BT + E(eeT ) = BBT + σ2 Im . (2.6)

Replacing E(xxT ) by its estimator n−1XTX and using the SVD of X it follows from (2.6) that

BBT = V (n−1S2 − σ2 Im) VT . (2.7)

Since BBT is non-negative definite, rank(BBT ) = rank(B) = R and (2.7) is an eigendecomposition
of BBT , it follows that the last (and smallest) m − R diagonal elements of (n−1S2 − σ2 Im) are
zero. By considering the eigenvalues of n−1XTX, this fact can be used to obtain a rough estimate
of the number R of components present.

2.2 ICA with measurement errors

Here, we discuss the introduction of measurment errors in ICA, where we consider the latter as
a refinement of PCA. We have the same model as (2.2) with the same assumptions, except that
the components a have unknown non-Gaussian distributions and are assumed to be statistically
independent. For the errors, we still have e ∼ N (0, σ2Im). A two-step estimation procedure is
as follows. In the first step, the unrotated components and loadings, and the error variance are
estimated as (2.3)-(2.5). This yields approximately uncorrelated components and fixes A and B
up to an orthogonal rotation. The second step then finds a rotation Q such that the components
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are approximately statistically independent, using some measure of non-Gaussianity as explained
in the Introduction.

Note that the estimates (2.3)-(2.5) are the Maximum Likelihood estimates for Gaussian com-
ponents. However, they can still be used for the situation where the components are non-Gaussian.
This is because they are also the least squares estimates, i.e. they minimize ‖X − ABT ‖2, as
explained in Section 2.1.

In the second step, the rotation Q is usually found by considering the prewhitened data X̃T =
(n−1S2

R − σ2 IR)−1/2 VT
R XT , which satisfies

X̃T = Q AT + ẼT , (2.8)

where ẼT = (n−1S2
R − σ2 IR)−1/2 VT

R ET . Note that (2.8) follows from XT = B AT + ET and
(2.4). In fact, it follows from (2.3) that X̃ is equal to the unrotated component estimates. Hence,
(2.8) is equivalent to finding a rotation Q such that the rotated components are approximately
independent.

The ICA model with the two-step procedure described above is used by Beckmann and Smith
(2004) to extract brain activation patterns from fMRI measurements. As mentioned in the In-
troduction, when the error covariance is assumed to be proportional to a known matrix (here,
the identity), the incorporation of it in the prewhitening step is standard practice in the ICA
community.

The two-step ICA estimation procedure described above find an optimal rotation of the principal
components according to the criterion of independent components. In psychological applications
of PCA, several criteria and algorithms have been developed for finding appropriate rotations of
the principal components. A comparison between these and the ICA criterion of independent
components is made by Kano, Miyamoto and Shimizu (2003).

2.3 ICA algorithms

Next, we describe two different types of ICA algorithms to obtain an optimal rotation Q of the
components (2.3). Let the prewhitened ICA model be given by x̃ = Q a + ẽ, see (2.8), with non-
Gaussian components a and Gaussian errors ẽ. Then a = QT x̃−QT ẽ. The goal is to find Q such
that a are approximately statistically independent.

Diagonalizing Cumulants

The ICA algorithm of Comon (1994a) considers the K-th order cumulants of the components a,
which are given by

Cum(K)(aj1 , . . . , ajK ) =
∑

(−1)k−1(k − 1)! E

∏
j∈S1

aj

 · · ·E
∏
j∈Sk

aj

 , (2.9)

where aj1 , . . . , ajK are elements of the random vector a and the summation involves all possible
partitions {S1, . . . , Sk}, 1 ≤ k ≤ K, of the integers {j1, . . . , jK}. For K ≥ 3, the cumulants of
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the components a are equal to the cumulants of QT x̃. This is due to the multilinearity of the
cumulant function and the fact that for K ≥ 3 the cumulants of Gaussian random variables are
zero, see De Lathauwer et al. (2000). To obtain statistically independent components, the following
property of cumulants is used. If the mean-zero components a are statistically independent, then
Cum(K)(aj1 , . . . , ajK ) 6= 0 only if j1 = j2 = . . . = jK , K ≥ 1.

The algorithm of Comon (1994a) uses the diagonality of the K-way array of the K-th order
cumulants of a as a measure of non-Gaussianity and independence. The algorithm makes the K-
way array of (the sample estimates of) the K-th order cumulants of QT x̃ as diagonal as possible
by varying the rotation Q. A Matlab algorithm for K = 4 can be obtained from Comon (1994b).
An alternative algorithm for K = 4 is called JADE and is due to Cardoso and Souloumiac (1993).
It is available from Cardoso (2005). For K = 4, each diagonal element of the cumulant array is the
kurtosis of one component. Therefore, the method for K = 4 is also referred to as “maximizing
kurtosis”.

For other ICA algorithms using cumulants see De Lathauwer et al. (2000) and the references
therein. Comon (1994a) shows that approximate diagonalization of the cumulant K-way array of
a is a natural approximation of the minimization of the mutual information of the joint pdf of a
and its marginal distributions. In this paper we will denote the K-th order cumulant algorithm of
Comon (1994a) as Comon-K.

Since Q is orthonormal, maximizing the sum-of-squares of the diagonal of the cumulant array is
equivalent to minimizing the sum-of-squares of the off-diagonal elements of the cumulant array; see
Comon (1994a). Moreover, both are equivalent to least squares fitting of the cumulants of Q a to
the cumulants of the prewhitened data x̃. These results are well-known in the ICA community. For
the sake of completeness, we give the proof for K = 4 in Proposition 2.1 below. Let ⊗ denote the
Kronecker product, and let V be the R2×R matrix such that (Q⊗Q) V = [q1⊗q1| . . . |qR⊗qR].

Proposition 2.1 Let C4 (R2×R2) contain the 4-way array of 4-th order cumulants of the prewhitened
data x̃ in matrix form. Let Q (R×R) be orthonormal and K (R×R) be diagonal (containing the
kurtosis of the components). Consider the least squares fitting of 4-th order cumulants

min
Q ,K

tr
[
(C4 − (Q⊗Q) V K VT (Q⊗Q)T )2

]
. (2.10)

Then, for any Q, the optimal K is given by

K = diag
[
VT (Q⊗Q)T C4 (Q⊗Q) V

]
. (2.11)

Moreover, the optimal Q can be found by minimizing the sum-of-squares of the off-diagonal of the
transformed cumulant 4-way array, i.e.

min
Q

tr
[
((Q⊗Q)T C4 (Q⊗Q)−V diag(VT (Q⊗Q)T C4 (Q⊗Q) V) VT )2

]
, (2.12)

or, equivalently, by maximizing the sum-of-squares of the diagonal of the transformed cumulant
4-way array, i.e.

max
Q

tr
[
(diag(VT (Q⊗Q)T C4 (Q⊗Q) V))2

]
. (2.13)
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Proof. Since (Q⊗Q)T (Q⊗Q) = IR and VTV = IR, we have

tr
[
(C4 − (Q⊗Q) V K VT (Q⊗Q)T )2

]
= tr

[
C2

4

]
−2 tr

[
VT (Q⊗Q)T C4 (Q⊗Q) V K

]
+tr

[
K2
]
.

(2.14)
Setting the derivative of (2.14) with respect to K equal to zero yields that, for any Q, the optimal
K in (2.10) is given by (2.11). Rewriting (2.10) as

tr
[
(Q⊗Q)T C4 (Q⊗Q)−V K VT

]
, (2.15)

and substituting (2.11) for K yields (2.12). Note that the term V K VT with K given by (2.11) is
the matrix form of the transformed 4-way cumulant array in which only the diagonal elements, i.e.
the kurtosis, are nonzero.

Next, we show the equivalence of (2.10) and (2.13). Let F = VT (Q ⊗ Q)T C4 (Q ⊗ Q) V.
Substituting K = diag(F) in the right-hand side of (2.14) yields

tr
[
C2

4

]
− 2 tr [F diag(F)] + tr

[
(diag(F))2

]
= tr

[
C2

4

]
− tr

[
(diag(F))2

]
. (2.16)

Minimizing the right-hand side of (2.16) over Q yields (2.13). The diagonal of the transformed
4-way cumulant array is given by V diag(F) VT , and we have

tr
[
(V diag(F) VT )2

]
= tr

[
(diag(F))2

]
. (2.17)

This completes the proof. 2

Approximate maximization of negentropy

Negentropy is used as a measure of “non-Gaussianity” in information theory and statistics. It is
negatively related to mutual information, see Hyvärinen et al. (2001). Hence, the maximization
of negentropy implies the minimization of mutual information. The following approximation of
negentropy has been proposed by Hyvärinen (1999) and reads as

[E(G(a))− E(G(z))]2 , (2.18)

where a is one component of a, z is a standard Gaussian variable and G is some non-quadratic
function. Clearly, (2.18) is a measure of non-Gaussianity. The algorithm maximizing the sample
estimate of the objective function (2.18) over Q is known as FastICA (Hyvärinen & Oja, 2000;
Hyvärinen, 2005). FastICA uses approximative Newton iterations and can be used for each com-
ponent separately or for all components simultaneously. For remarks on the influence of the choice
of G on the performance of the FastICA algorithm, see Hyvärinen (1999). In Hyvärinen and Oja
(2000) it is shown that the objective function (2.18) is indeed an approximation of negentropy. See
also Hyvärinen et al. (2001).
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3 ICA with measurement errors by least squares covariance fitting

Here, we discuss a general ICA model with measurement errors. We have the same assumptions
as in Section 2.2 except that the errors may be correlated and their variances are allowed to be
different, i.e. e ∼ N (0,Ψ), where Ψ is the error covariance matrix. The estimation procedure
consists of two steps. In the first step, the unrotated components and loadings, and the error
covariance Ψ are determined by least squares fitting of the model covariance to the observed
covariance. In the second step, an ICA algorithm determines a rotation such that the rotated
components are approximately independent. When Ψ = σ2 Im this yields the same estimation
procedure as described in Section 2.2. This will be shown below. When Ψ is diagonal this is the
approach of Ikeda and Toyama (2000) with Minres FA in the first step of the estimation procedure.
In case the error covariance Ψ is not diagonal, we assume a parametric covariance model to ensure
identifiability. Error covariance models are discussed in Section 3.2 below.

3.1 Estimation procedure

Here, we explain the estimation procedure in more detail. We have the model (2.2) with non-
Gaussian components a with an unknown distribution, and errors e ∼ N (0,Ψ). We assume a and
e to be independent. Analogous to (2.6), we have

Cov(x) = BBT + Ψ . (3.1)

Let C = n−1XTX be the estimate of the data covariance matrix. In the first step, we minimize
the function

f(B,Ψ) = tr
[
(C−BBT −Ψ)2

]
, (3.2)

over B and Ψ. For given Ψ and eigendecomposition C −Ψ = V D VT , where the eigenvalues in
D are in decreasing order, we obtain

B̂LS = VR D1/2
R , (3.3)

where VR contains the first R columns of V, and DR contains the first R eigenvalues of D. The
estimate of Ψ is then obtained by minimizing

g(Ψ) = tr
[
(C−VR DR VT

R −Ψ)2
]

= tr
[
V D VT −VR DR VT

R)2
]

= tr
[
(Vm−R Dm−R VT

m−R)2
]

= tr
[
D2
m−R

]
= d2

R+1 + · · ·+ d2
m , (3.4)

where Vm−R contains the last m−R columns of V, Dm−R contains the last m−R eigenvalues of
D, and dj is the j-th diagonal element of D. Hence, the function value of g(Ψ) can be computed
as the sum-of-squares of the m−R smallest eigenvalues of C−Ψ.
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For an optimization method using gradients, we have

∂g

∂ψii
= 2

(
ψii +

R∑
l=1

dl v
2
il − cii

)
, (3.5)

∂g

∂ψij
= 4

(
ψij +

R∑
l=1

dl vil vjl − cij

)
. (3.6)

From X = A BT + E it follows that, for given B, the least squares estimate of the components is
given by

ÂLS = X B (BTB)−1 . (3.7)

This equality also holds for the unrotated PCA, rotated PCA, and ML estimates (2.3)-(2.4). As
before, the least squares estimates of A and B can be rotated without affecting the model fit. The
rotation Q is determined in the second step of the estimation procedure. As in Section 2.2, an ICA
algorithm is used to find a Q such that the rotated components are approximately independent.

Below, we summarize the steps of our estimation method.

ICA with errors by least squares covariance fitting

Input: data matrix X (n×m), number of components R.
Output: estimates of (rotated) components ÂLSQ, (rotated) loadings B̂LSQ, and
error covariance Ψ̂LS.

1. Estimate the data covariance as C = n−1XTX.

2. Minimize tr
[
(C−BBT −Ψ)2

]
over B and Ψ. This yields the least squares

estimates B̂LS and Ψ̂LS.

3. Compute the unrotated components as ÂLS = X B (BTB)−1, where B = B̂LS.

4. Using an ICA algorithm, determine a rotation Q such that the rotated com-
ponents ÂLSQ are approximately independent.

The least squares estimates ÂLS and B̂LS do not have a closed form representation unless Ψ =
σ2 Im. This also holds for the prewhitened data X̃, which we define as X̃T = (BTB)−1BTXT with
B = B̂LS . Note that the prewhitened data are defined in the same way as in Section 2.2. Again,
the prewhitened data X̃ are equal to the estimate of the unrotated components.

Note that by assuming Ψ 6= σ2 Im, the number of components in the ICA model cannot be
estimated by considering the eigenvalues of the sample covariance matrix n−1XTX, while this is
possible for Ψ = σ2 Im. For the general ICA model, information criteria such as the Akaike informa-
tion criterion or minimum description length may be used to estimate the number of components,
see Ikeda and Toyama (2000) for diagonal Ψ.
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As a final result in this section, we show that if Ψ = σ2 Im, then the first step of the estimation
procedure yields the ML estimates (2.3)-(2.5) with Q = IR. Hence, in this case the minimization
of ‖X −ABT ‖2, i.e. the distance between the data and the model, produces the same results as
the minimization of ‖n−1XTX − BBT −Ψ‖2, i.e. the distance between the data covariance and
the model covariance. Note that A = X B (BTB)−1 also holds for (2.3)-(2.4).

Proposition 3.1 The expressions (2.4)-(2.5) for B and σ2 minimize

f(B, σ2) = tr
[
(n−1XTX−BBT − σ2 Im)2

]
.

Proof. See Anderson (2003), Section 14.3. 2

3.2 Error covariance models

Here, we discuss the error covariance models we consider. For diagonal error covariance matrix Ψ,
we discuss two known identifiability results (in the least squares sense) of Ψ when fitting the model
covariance to the observed covariance using least squares. Next, we discuss the cases where the
errors follow an AR(1) process or a Markov simplex process.

Diagonal Ψ

For diagonal Ψ, the first step of the estimation procedure is exactly the Minres FA procedure.
Regarding the (global) identifiability of a diagonal Ψ in (3.1), we state the following two known
results. It is assumed that the loadings matrix B has full column rank R.

Theorem 3.2 (Anderson and Rubin, 1956) Consider the factor analysis model (3.1) with diagonal
error covariance matrix. Suppose there are two solutions, i.e.

B1 BT
1 + Ψ1 = B2 BT

2 + Ψ2 . (3.8)

Suppose that if any row of B1 is deleted there remain two disjoint submatrices of rank R. Then
Ψ1 = Ψ2 and B1 = B2 Q for some orthogonal rotation Q. 2

Theorem 3.3 (Bekker and Ten Berge, 1997) Consider the factor analysis model (3.1) with diag-
onal error covariance matrix. Suppose there are two solutions, i.e.

B1 BT
1 + Ψ1 = B2 BT

2 + Ψ2 . (3.9)

If

R <
2m+ 1− (8m+ 1)1/2

2
, (3.10)

then the set of (B1,Ψ1) for which (3.9) holds with Ψ1 6= Ψ2 has Lebesgue measure zero. That is,
we have Ψ1 = Ψ2 and B1 = B2 Q for some orthogonal rotation Q almost everywhere. 2
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The condition of Theorem 3.2 implies that 2R + 1 ≤ m. Theorem 3.3 shows that a diagonal Ψ
is identified almost surely if R is below the so-called Ledermann bound (3.10) (Ledermann, 1937).
For m ≥ 4 the latter is less restrictive than 2R+ 1 ≤ m. Under 2R+ 1 ≤ m, however, Theorem 3.3
follows from Theorem 3.2 (without the almost everywhere restriction).

Note that B1 BT
1 = B2 BT

2 implies B1 = B2 Q for some orthogonal rotation Q.
In the proofs of Theorems 3.2 and 3.3 it is not assumed that Ψ1 and Ψ2 are positive semi-

definite. Therefore, for diagonal Ψ, Theorems 3.2 and 3.3 can be used as uniqueness conditions for
Minres solutions to (3.1).

Two covariance models for Ψ

We consider two parametric models for a non-diagonal Ψ, namely the autoregressive model of order
1 and the Markov simplex model. For AR(1), we have

ψij =
σ2

1− ρ2
ρ|i−j| , (3.11)

with |ρ| < 1. For the Markov simplex model, we have

ψij = σ2 ρ|i−j| , (3.12)

with |ρ| < 1. The gradients of the parameters in (3.11) and (3.12) can be obtained as

∂g

∂qT
=

∂g

∂vech(Ψ)T
∂vech(Ψ)
∂qT

, (3.13)

where vech denotes the vector of non-duplicate elements of a symmetric matrix and q is the vector
of parameters to be estimated. The elements of ∂g/∂vech(Ψ)T are given by (3.5)-(3.6).

4 Monte Carlo experiments

To assess the performance of our ICA estimation method, we conduct a series of Monte Carlo
experiments. For various error covariance models for Ψ, we compare the estimation accuracy of
the loadings matrix B for the correct Ψ model versus assuming a simpler Ψ model. Throughout,
we have R = 3 independent components which follow a Laplace distribution, i.e.

f(x) =
√

2
2

exp
(
−
√

2 |x|
)
. (4.1)

From (4.1) it follows that the components have mean zero and variance 1. Their kurtosis equals 3.
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We have m = 9 observed variables and loadings matrix

B =



0.9 0 0
0 0.9 0
0 0 0.9

0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

0.1 0.1 0.1
0.5 0.5 0.5
0.9 0.9 0.9


. (4.2)

In each of the cases below, we generate n = 500 realizations of the independent components, and
use 200 repetitions.

Diagonal Ψ

The true error covariance equals Ψ = diag(0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8). In Table 1 in
the Appendix we summarize the performance of correctly assuming a diagonal Ψ versus incorrectly
assuming Ψ = σ2 Im. In the second step, we use four different ICA algorithms, namely Comon-4,
JADE, FastICA and the least squares fitting of 4-th order cumulants (LSCUM-4). Recall that
Comon-4 and JADE are designed to maximize the sum-of-squares of the kurtosis of the rotated
components, and this objective is equivalent to LSCUM-4; see Proposition 2.1. For the 27 param-
eters of the mixing matrix B we give the maximum average bias for the 200 repetitions and the
corresponding average relative bias. Also, we report the maximum average standard deviation and
the maximum average root mean squared error for the parameters of B.

For the FastICA algorithm we used g(x) = x3 as derivative of G in (2.18). For g(x) = tanh(x),
which is recommended for components with positive kurtosis (Hyvärinen, 1999), the FastICA al-
gorithm suffered from convergence problems.

As can be seen from Table 1, the correct error model has considerably lower bias than when
incorrectly assuming Ψ = σ2 Im. The standard deviations and root mean squared errors are of the
same order of magnitude for both models. JADE has the highest maximum bias, which is still 9.4
percent for the correct error model. Also, JADE has larger standard deviations than the other ICA
algorithms.

Note that, with for B in (4.2) the identifiability condition for diagonal Ψ of Theorem 3.2 is
satisfied.

AR(1) model for Ψ

The true values of the AR(1) parameters are σ2 = 0.8 and ρ = 0.2. In Table 2 in the Appendix
we summarize the performance of incorrectly assuming Ψ = σ2 Im versus correctly assuming an
AR(1) model for Ψ. The results are comparable to those in Table 1. The maximum bias is
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substantially decreased by choosing the correct model for Ψ, while the standard deviations and
root mean squared errors are of the same order of magnitude for both models. If we take ρ = 0.4
instead of ρ = 0.2 (results not presented), then incorrectly choosing Ψ = σ2 Im results in a root
mean squared error which is approximately twice as large as when we assume Ψ follows an AR(1)
model.

Out of the four ICA methods, JADE gives in the highest bias and standard deviation.
In Table 4 in the Appendix we summarize the performance of incorrectly assuming a diagonal

Ψ versus correctly assuming an AR(1) model for Ψ. Clearly, incorrectly assuming uncorrelated
errors results in a much higher bias and standard deviation. This holds for all four ICA algorithms.

For the estimation of the AR(1) parameters of the error model random starting values were
used.

Markov simplex model for Ψ

The true values of the Markov simplex parameters are σ2 = 0.8 and ρ = 0.2. In Table 3 in
the Appendix we summarize the performance of incorrectly assuming Ψ = σ2 Im versus correctly
assuming a Markov simplex model for Ψ. As before, the maximum bias is substantially decreased
by choosing the correct model for Ψ, while the standard deviations and root mean squared errors
are of the same order of magnitude for both models. If we take ρ = 0.4 instead of ρ = 0.2 (results
not presented), then incorrectly choosing Ψ = σ2 Im results in a root mean squared error which is
more than 1.5 times as large as when we assume Ψ follows a Markov simplex model.

The best performing ICA algorithms are Comon-4 and LSCUM-4, while JADE does worst.
In Table 5 in the Appendix we summarize the performance of incorrectly assuming a diagonal

Ψ versus correctly assuming a Markov simplex model for Ψ. Clearly, incorrectly assuming uncor-
related errors results in a much higher bias and standard deviation. This holds for all four ICA
algorithms, although JADE has higher bias and standard deviation than the other three algorithms.

For the estimation of the Markov simplex parameters of the error model random starting values
were used.

5 Discussion

In this paper, we discussed ICA with non-Gaussian components that have an unknown distribution,
and Gaussian measurement errors, and we proposed a two-step estimation procedure. In the first
step, least squares fitting of the model covariance to the observed covariance yields the unrotated
components and loadings, and the error covariance matrix. In the second step, an ICA algorithm
is used to find a rotation such that the rotated components are approximately independent. We
considered isotropic errors, uncorrelated errors, AR(1) errors, and Markov simplex errors. For
uncorrelated errors, two global identifiability conditions for error covariance Ψ are known in the
literature (see Theorems 3.2 and 3.3). Further research is needed to obtain global identifiability
results for non-diagonal Ψ and parametrized covariance models such as AR(1) and Markov simplex.
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An interesting reference is Davies (2004) who discusses general identifiability issues in ICA with
errors, especially related to the error covariance.

In case of isotropic errors, our approach is equivalent to using PCA to obtain the unrotated
components (see Proposition 3.1). In case of uncorrelated and heteroscedastic errors, our approach
is identical to Ikeda and Toyama (2000) who use Minres FA as the first step of the estimation
procedure. In this case, also other FA techniques may be used. For example, Minimum Rank FA
of Ten Berge and Kiers (1991) guarantees that both Ψ and C−Ψ are positive semi-definite. This
is not the case for Minres FA.

By Monte Carlo experiments, we compared four ICA algorithms for obtaining an optimal rota-
tion: Comon-4, JADE, FastICA and LSCUM-4 (least squares fitting of the fourth order cumulants).
Also, we assessed the consequences of misspecification of the error covariance model. As a mea-
sure of performance, we used the accuracy in estimating the loadings matrix. Three independent
components were present, all following a Laplace distribution. The number of observed variables
was nine. From the results of our Monte Carlo experiments, we may conclude that Comon-4 and
LSCUM-4 gave the best overall performance in terms of bias and mean squared error of estimates
of the loadings. JADE performed worst overall.

The results from the Monte Carlo experiments regarding the misspecification of the error co-
variance model were as follows. Considerably lower bias of the loadings estimates is obtained when
the correct error covariance model is chosen, especially when choosing Ψ diagonal if the true error
covariance model is AR(1) or Markov simplex. In that case, also the mean squared errors of the
loadings estimates are considerably lower. Choosing Ψ = σ2 Im while the correct model for Ψ is
diagonal, AR(1) or Markov simplex results in a mean squared error of the same order as when
the correct model for Ψ is chosen. This is because the mean squared error is dominated by the
variance of the estimator since the bias is relatively small. Considering only mean squared error
one may therefore draw the conclusion that choosing Ψ = σ2 Im is not bad even in the presence
of correlated errors. However, this only holds if the correlation parameter ρ in (3.11) and (3.12) is
small. If we take ρ = 0.4 instead of ρ = 0.2, then incorrectly choosing Ψ = σ2 Im results in a root
mean squared error which is more than 1.5 times as large as for the correct error covariance model.

Our method does not have the drawbacks of Attias (1999), who assumes Gaussian mixtures for
the component distributions, since our estimation procedure is efficient and information criteria
can be used to infer on the number of independent components present in the data. Once more
general identifiability results of the error covariance are obtained, least squares covariance fitting
can be used for a large variety of ICA applications featuring correlated errors. The latter include
radar, underwater passive listening, and general signal detection via an array of sensors.
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Appendix: Monte Carlo results

model Ψ ICA method max bias max st. dev. max rmse

Ψ = σ2 Im Comon-4 -0.1234 (13.7%) 0.2190 0.2219

Ψ = σ2 Im JADE -0.1299 (14.4%) 0.2476 0.2487

Ψ = σ2 Im FastICA -0.1198 (13.3%) 0.2147 0.2163

Ψ = σ2 Im LSCUM-4 -0.1235 (13.7%) 0.2157 0.2208

Ψ diagonal Comon-4 -0.0320 (3.6%) 0.2152 0.2162

Ψ diagonal JADE -0.0841 (9.4%) 0.2378 0.2516

Ψ diagonal FastICA -0.0380 (4.2%) 0.1895 0.1914

Ψ diagonal LSCUM-4 -0.0408 (4.5%) 0.2011 0.2052

Table 1: Performance of ICA with errors by least squares covariance fitting: incorrectly as-
suming Ψ = σ2 Im versus correctly assuming diagonal Ψ. The true error covariance equals
Ψ = diag(0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8). Four different ICA algorithms have been
used. The last three columns present the maximal bias, maximal standard deviation and maximal
root mean squared error among the 27 parameters of the mixing matrix B. For the maximal bias,
also the relative bias is given.
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model Ψ ICA method max bias max st. dev. max rmse

Ψ = σ2 Im Comon-4 -0.1234 (13.7%) 0.2190 0.2219

Ψ = σ2 Im JADE -0.1299 (14.4%) 0.2476 0.2487

Ψ = σ2 Im FastICA -0.1198 (13.3%) 0.2147 0.2163

Ψ = σ2 Im LSCUM-4 -0.1235 (13.7%) 0.2157 0.2208

Ψ AR(1) Comon-4 -0.0438 (4.9%) 0.2156 0.2168

Ψ AR(1) JADE -0.0575 (6.4%) 0.2635 0.2676

Ψ AR(1) FastICA -0.0546 (6.1%) 0.2260 0.2325

Ψ AR(1) LSCUM-4 -0.0365 (4.1%) 0.2045 0.2052

Table 2: Performance of ICA with errors by least squares covariance fitting: incorrectly assuming
Ψ = σ2 Im versus correctly assuming an AR(1) model for Ψ. The true model for Ψ is AR(1) with
σ2 = 0.8 and ρ = 0.2. Four different ICA algorithms have been used. The last three columns present
the maximal bias, maximal standard deviation and maximal root mean squared error among the
27 parameters of the mixing matrix B. For the maximal bias, also the relative bias is given.

model Ψ ICA method max bias max st. dev. max rmse

Ψ = σ2 Im Comon-4 0.1157 (Inf) 0.2223 0.2250

Ψ = σ2 Im JADE -0.1110 (12.3%) 0.3603 0.3761

Ψ = σ2 Im FastICA 0.1086 (Inf) 0.2381 0.2444

Ψ = σ2 Im LSCUM-4 0.1145 (Inf) 0.2066 0.2099

Ψ Markov Comon-4 -0.0396 (4.4%) 0.1969 0.1973

Ψ Markov JADE -0.0510 (5.7%) 0.2330 0.2372

Ψ Markov FastICA -0.0502 (5.6%) 0.2233 0.2289

Ψ Markov LSCUM-4 -0.0336 (3.7%) 0.1968 0.1975

Table 3: Performance of ICA with errors by least squares covariance fitting: incorrectly assuming
Ψ = σ2 Im versus correctly assuming a Markov simplex model for Ψ. The true model for Ψ is
Markov simplex with σ2 = 0.8 and ρ = 0.2. Four different ICA algorithms have been used. The
last three columns present the maximal bias, maximal standard deviation and maximal root mean
squared error among the 27 parameters of the mixing matrix B. For the maximal bias, also the
relative bias is given. The relative bias is reported as Inf if the true parameter value is zero.
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model Ψ ICA method max bias max st. dev. max rmse

Ψ diagonal Comon-4 0.4432 (49%) 1.2708 1.3459

Ψ diagonal JADE 0.4527 (50%) 1.2546 1.3338

Ψ diagonal FastICA 0.4480 (50%) 1.1833 1.2653

Ψ diagonal LSCUM-4 0.4411 (49%) 1.2563 1.3315

Ψ AR(1) Comon-4 -0.0426 (4.7%) 0.2134 0.2145

Ψ AR(1) JADE -0.0399 (4.4%) 0.2565 0.2583

Ψ AR(1) FastICA -0.0413 (4.6%) 0.2113 0.2153

Ψ AR(1) LSCUM-4 -0.0431 (4.8%) 0.2119 0.2156

Table 4: Performance of ICA with errors by least squares covariance fitting: incorrectly assuming
diagonal Ψ versus correctly assuming an AR(1) model for Ψ. The true model for Ψ is AR(1) with
σ2 = 0.8 and ρ = 0.2. Four different ICA algorithms have been used. The last three columns present
the maximal bias, maximal standard deviation and maximal root mean squared error among the
27 parameters of the mixing matrix B. For the maximal bias, also the relative bias is given.

model Ψ ICA method max bias max st. dev. max rmse

Ψ diagonal Comon-4 0.3367 (37%) 1.2992 1.3421

Ψ diagonal JADE 0.3448 (38%) 1.3312 1.3751

Ψ diagonal FastICA 0.3670 (41%) 1.3333 1.3829

Ψ diagonal LSCUM-4 0.3346 (37%) 1.2938 1.3363

Ψ Markov Comon-4 -0.0367 (4.1%) 0.2389 0.2405

Ψ Markov JADE -0.0929 (10%) 0.2877 0.3023

Ψ Markov FastICA -0.0313 (3.5%) 0.2319 0.2334

Ψ Markov LSCUM-4 -0.0409 (4.5%) 0.2428 0.2462

Table 5: Performance of ICA with errors by least squares covariance fitting: incorrectly assuming
diagonal Ψ versus correctly assuming a Markov simplex model for Ψ. The true model for Ψ is
Markov simplex with σ2 = 0.8 and ρ = 0.2. Four different ICA algorithms have been used. The
last three columns present the maximal bias, maximal standard deviation and maximal root mean
squared error among the 27 parameters of the mixing matrix B. For the maximal bias, also the
relative bias is given.
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