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In the Candecomp/Parafac (CP) model, a three-way array X is writ-

ten as the sum of R outer vector product arrays and a residual array.

The former comprise the columns of the component matrices A, B

and C. For fixed residuals, (A, B, C) is unique up to trivial ambigui-

ties, if 2R + 2 is less than or equal to the sum of the k-ranks of A,

B and C. This classical result was shown by Kruskal in 1977. In this

paper, we consider the case where one of A, B, C has full column

rank, and show that in this case Kruskal’s uniqueness condition im-

pliesa recentlyobtaineduniquenesscondition.Moreover,weobtain

Kruskal-type uniqueness conditions that are weaker than Kruskal’s

condition itself. Also, for (A, B, C) with rank(A) = R − 1 and C full

column rank, we obtain easy-to-check necessary and sufficient

uniqueness conditions.We extend our results to the Indscal decom-

position inwhich the arrayX has symmetric slices andA = B is im-

posed.We consider the real-valued CP and Indscal decompositions,

but our results are also valid for their complex-valued counterparts.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Carroll and Chang [1] and Harshman [4] independently proposed the samemethod for component

analysis of three-way arrays, and named it Candecomp and Parafac, respectively. Let ◦ denote the outer

vector product, i.e., for vectors x and y we define x ◦ y = xyT . For three vectors x, y and z, the product

x ◦ y ◦ z is a three-way arraywith elements xiyjzk . In the Candecomp/Parafac (CP)model, an I × J × K

array X is decomposed into

�
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X =
R∑

r=1

(ar ◦ br ◦ cr) + E, (1.1)

where the vectors ar , br and cr have size I, J and K , respectively. For fixed R, the CP decomposition

(1.1) is found by minimizing the sum of squares of E. Usually an iterative algorithm is used for this

purpose, see e.g. Tomasi and Bro [26]. In this paper, we will denote column vectors as x, matrices as X

and three-way arrays as X.

We consider the real-valued CP model, i.e. we assume the array X and the vectors ar , br and cr
to be real-valued. The real-valued CP model is used in a majority of applications in psychology and

chemistry; see Kroonenberg [10], Kiers and Van Mechelen [7] and Smilde et al. [16]. Complex-valued

applications of CP occur in e.g. signal processing and telecommunications research; see Sidiropoulos

et al. [14] and Sidiropoulos et al. [15]. For an overview of applications of the CP model and related

models, see Kolda and Bader [8].

The CP model can be considered as a three-way generalization of Principal Component Analysis or

the Singular ValueDecomposition. The three-way rank ofX is defined as the smallest number of rank-1

arrays whose sum equals X. A three-way array has rank 1 if it is the outer product of three vectors.

Hence, in the CP decomposition (1.1) each of the R components (ar ◦ br ◦ cr) has rank 1. The three-way

rank of X is equal to the smallest number of components for which a CP decomposition exists with

perfect fit, i.e.,with an all-zero residual termE.Moreover, a CP algorithmdesigned tominimize the sum

of squares of the residuals tries to find a best rank-R approximation of the array X. Unfortunately, such

a best rank-R approximation does not always exist, see De Silva and Lim [3]. In such cases, diverging

CP components occur while running a CP algorithm. This phenomenon is also known as “degeneracy",

see Kruskal et al. [12], Stegeman [17,19,18] and Krijnen et al. [9]. Since we consider the real-valued CP

model, the rank of any array is assumed to be the rank over the real field.

ACPsolution isusually expressed in termsof componentmatricesA(I × R), B (J × R)andC(K × R),
which have as columns the vectors ar , br and cr , respectively. Let the kth slices of X and E be denoted

by Xk (I × J) and Ek (I × J), respectively. Then (1.1) can be written as

Xk = ACkB
T + Ek , k = 1, . . . , K , (1.2)

where Ck is the diagonal matrix with the kth row of C as its diagonal.

One of the most attractive features of the CP model is its uniqueness property. The uniqueness of a

CP solution is usually studied for given residualsE, or, equivalently, for a givenfittedmodel array. To any

set of componentmatrices (A, B, C) corresponds a fittedmodel array X̂ = X − E. It can be seen that the

component matrices (A, B, C) corresponding to X̂ can only be unique up to rescaling/counterscaling

and jointly permuting columns of A, B and C. Indeed, the fitted model array will be the same for

the solution given by A = A�Ta, B = B�Tb and C = C�Tc , for a permutationmatrix� and diagonal

matricesTa,Tb andTc withTaTbTc = IR.When, for a givenfittedmodel array X̂, the CP solution (A, B, C)
is unique up to these indeterminacies, it is called essentially unique.

Kruskal [11] has shown that essential uniqueness of the CP solution holds under relatively mild

conditions. Kruskal’s condition relies on a particular concept of matrix rank that he introduced, which

has been named k-rank after him. Specifically, the k-rank of a matrix is the largest number x such that

every subset of x columns of the matrix is linearly independent. We denote the k-rank of a matrix A

as kA . For a CP solution (A, B, C), Kruskal [11] proved that

kA + kB + kC � 2R + 2 (1.3)

is a sufficient condition for essential uniqueness. A more condensed and accessible proof of (1.3) than

Kruskal’s original proof was given by Stegeman and Sidiropoulos [22]. Kruskal’s uniqueness condition

was generalized to N-way arrays with N > 3 by Sidiropoulos and Bro [13]. Ten Berge and Sidiropoulos

[24] have shown that Kruskal’s sufficient condition is also necessary for essential uniqueness when

R = 2 or R = 3, but not when R > 3. It may be noted that (1.3) cannot be met when R = 1. However,

uniqueness for that case has already been proven by Harshman [5]. Ten Berge and Sidiropoulos [24]

conjectured that Kruskal’s conditionmight be necessary and sufficient when R > 3, provided that the

k-ranks of A, B, and C are equal to their ranks. However, Stegeman and Ten Berge [20] refuted this

conjecture.
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AlternativeCPuniqueness conditionswereobtainedby JiangandSidiropoulos [6] andDeLathauwer

[2]. They independentlyexamined thecasewhereoneof thecomponentmatrices, sayC, has full column

rank. CP uniqueness then only depends on (A, B). Jiang and Sidiropoulos [6] obtained the following

necessary and sufficient CP uniqueness condition:

(A � B)d is not of the form (f ⊗ g) for any d with ω(d) � 2, (1.4)

whered = (d1, . . . , dR)
T ,ω(·)denotes thenumber of nonzero elements of a vector,⊗denotes theKro-

neckerproduct, and�denotes the (column-wise)Khatri-Raoproduct, i.e.,A � B = [a1 ⊗ b1| · · · |aR ⊗
bR].

Unfortunately, condition (1.4) is not easy to check. Jiang and Sidiropoulos [6] showed that (1.4) is

equivalent to

U

⎛⎜⎜⎜⎝
d1d2
d1d3

...
dR−1dR

⎞⎟⎟⎟⎠ = 0 implies ω(d) � 1, (1.5)

where the matrix U depends on (A, B). This shows that U having full column rank is sufficient for

condition (1.4) to hold. However, U having full column rank is not necessary for (1.4) to hold.

De Lathauwer [2] independently derived the same sufficient CP uniqueness condition, i.e.U having

full column rank. Moreover, De Lathauwer [2] showed that if (A, B) is randomly sampled from an

(I + J)R-dimensional continuous distribution, then U has full column rank almost surely if

I(I − 1)J(J − 1)

4
�

R(R − 1)

2
. (1.6)

As will be explained in the next section, condition (1.6) is equivalent to U being a square or vertical

matrix (after redundant rows have been deleted). An alternative proof of condition (1.6) was provided

by Stegeman, Ten Berge andDe Lathauwer [21]. Also, De Lathauwer [2] showed that if C has full column

rank and the residual term is all-zero, then the CP decomposition of X can be obtained algebraically

from a simultaneous matrix diagonalization.

In this paper, we consider the relation between uniqueness condition (1.5) and

kA + kB � R + 2, (1.7)

which is Kruskal’s condition (1.3) when kC = R (C has full column rank). For random (A, B) as above,
condition (1.6) ismore relaxed thanKruskal’s condition (1.7),which equalsmin(I, R) + min(J, R) � R +
2 in this case. It is generally believed that this is also true for non-random (A, B), although a math-

ematical proof has not been provided. The main contribution of this paper is that we provide this

mathematical proof. Inparticular,we showthat (1.7) implies thatUhas full columnrank.Accidently,we

obtain several Kruskal-type uniqueness conditions that are more relaxed than (1.7) but stronger than

U having full column rank. Also, for (A, B) with rank(A) = R − 1, we obtain easy-to-check necessary

and sufficient uniqueness conditions. Moreover, we extend our analysis to the Indscal model, which

is the CP model for I × I × K arrays with symmetric slices and the constraint A = B imposed. Our

results yield more insight into CP uniqueness and shed light on the space between Kruskal’s condition

(1.7) and the necessary and sufficient condition (1.5) of Jiang and Sidiropoulos [6].

The paper is organized as follows. In Section 2,we consider the structure of thematrixU of Jiang and

Sidiropoulos [6] and present some auxiliary results. In Sections 3 and 4, we consider CP uniqueness

when C has full column rank. In Section 5, we consider uniqueness of the Indscal decomposition.

Finally, Section 6 contains a discussion of our results.

2. Structure of the matrix U

Asmentionedabove, thenecesaryandsufficientCPuniquenesscondition (1.4)of JiangandSidiropou-

los [6] holds if the matrix U, depending on the elements of A and B, has full column rank. Here, we

consider the structure of U. We have
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U = Ã � B̃, (2.1)

where the matrices Ã and B̃ are defined as follows. Let Ã have elements∣∣∣∣aig aih
ajg ajh

∣∣∣∣ , with 1� i < j � I and 1� g < h� R, (2.2)

where in each row of Ã the value of (i, j) is fixed and in each column of Ã the value of (g, h) is fixed.

The columns of Ã are ordered such that index g runs slower than h. The rows of Ã are ordered such

that index i runs slower than j. Note that Ã can be written as

Ã = V1(A ⊗ A)W, (2.3)

where V1 contains I(I − 1)/2 distinct rows of II2 , and W contains R(R − 1)/2 linearly independent

columns of the form ek − el , where the latter are columns of IR2 . The matrix (A ⊗ A)W contains the

columns (ag ⊗ ah) − (ah ⊗ ag) with 1� g < h� R. The premultiplication by V1 in (2.3) deletes rows

from (A ⊗ A)W that are all-zero or identical (up to sign) to another row.

Analogous to Ã, let B̃ have elements∣∣∣∣big bih
bjg bjh

∣∣∣∣ , with 1� i < j � J and 1� g < h� R, (2.4)

where in each row of B̃ the value of (i, j) is fixed and in each column of B̃ the value of (g, h) is fixed.

The columns of B̃ are ordered such that index g runs slower than h. The rows of B̃ are ordered such

that index i runs slower than j. As in (2.3), the matrix B̃ can be written as

B̃ = V2(B ⊗ B)W, (2.5)

where V2 contains J(J − 1)/2 distinct rows of IJ2 .

The matrix U is defined by (2.1) up to a row permutation. From (2.3) and (2.5) we obtain

U = (V1 ⊗ V2)[((A ⊗ A)W) � ((B ⊗ B)W)]. (2.6)

The matrix ((A ⊗ A)W) � ((B ⊗ B)W) contains the columns [(ag ⊗ ah) − (ah ⊗ ag)] ⊗ [(bg ⊗
bh) − (bh ⊗ bg)] with 1� g < h� R. The premultiplication by (V1 ⊗ V2) deletes rows which are all-

zero or identical (up to sign) to another row. ThematrixU in Jiang and Sidiropoulos [6] is equal to (2.6)

without the premultiplication by (V1 ⊗ V2). The matrix U in (2.6) has I(I − 1)J(J − 1)/4 rows and

R(R − 1)/2 columns and condition (1.6) is equivalent to U being a square or vertical matrix, which is

necessary for full column rank.

Next, we present two lemmas that we need in our analysis. The first lemma proves a relation

between A and Ã.

Lemma 2.1. A has full column rank if and only if Ã has full column rank.

Proof. Lemma 4 in Stegeman et al. [21] shows that Ã has linearly dependent columns if this is true for

A itself. Hence, if Ã has full column rank, then also A has full column rank.

The converse follows from (2.3). If A has full column rank, then also (A ⊗ A) has full column rank.

SinceW has full columnrank, it follows that also (A ⊗ A)W has full columnrank. Thepremultiplication

by V1 only deletes rows which are all-zero or identical (up to sign) to another row. Therefore, (2.3)

implies that Ã has full column rank. �

The next lemma states that the rank of U does not change when A and B are premultiplied by

nonsingular matrices.

Lemma 2.2. Let S(I × I) and T(J × J) be nonsingular matrices and define F = SA and G = TB.
Let F̃ and G̃ be defined analogous to Ã and B̃. Then the rank of F̃ � G̃ is equal to the rank of

U = Ã � B̃.
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Proof. Consider equation (2.6). The premultiplication by (V1 ⊗ V2) deletes rowswhich are all-zero or

identical (up to sign) to another row. Hence, the rank of U is equal to the rank of

((A ⊗ A)W) � ((B ⊗ B)W). (2.7)

Premultiplying (2.7) by the nonsingular matrix (S ⊗ S) ⊗ (T ⊗ T) does not change its rank. The

resulting matrix is identical to F̃ � G̃ without the premultiplication by (V1 ⊗ V2). Hence, the rank of

F̃ � G̃ is equal to the rank of U = Ã � B̃. �

3. When A and/or B has rank equal to k-rank

Here, we explore CP uniqueness when C has full column rank and either A or B (or both) has rank

equal to k-rank. We denote the rank of A as rA . In our analysis, we assume that kA � 2 and kB � 2. This

is necessary for CP uniqueness, see e.g. Stegeman and Sidiropoulos [22]. Our main result is that under

these conditions, Kruskal’s condition (1.7) implies that U has full column rank.

Theorem 3.1. Let kC = R, kA � 2 and kB � 2. Suppose rA = kA or rB = kB or both.
If kA + kB � R + 2, then U has full column rank and, hence, we have CP uniqueness. �

However,we are able to obtain the following stronger result inwhichKruskal’s condition is replaced

with a weaker condition.

Proposition 3.2. Let kC = R, kA � 2 and kB � 2. Suppose rA = kA or rB = kB or both.
If rA + rB � R + 2, then U has full column rank and, hence, we have CP uniqueness. �

Since the k-rank of a matrix cannot be larger than its rank, it is clear that Proposition 3.2 implies

Theorem 3.1. If rA > kA or rB > kB, the condition rA + rB � R + 2 is more relaxed than Kruskal’s

condition kA + kB � R + 2.

We present the proof of Proposition 3.2 in Section 3.1. In Section 3.2, we prove necessary and

sufficient conditions forCPuniquenesswhenkC = R, rA = kA = R − 1andkB � 2. Section3.3 contains

an illustrative example.

3.1. Proof of Proposition 3.2

We consider the case rA = kA . The proof for rB = kB is completely analogous. Suppose first rA =
kA = R. Premultiplying A by a nonsingular matrix has no influence on CP uniqueness nor on the rank

of U (see Lemma 2.2). Thus, we may transform A to
[
IR
O

]
without loss of generality. We have (up to a

row permutation) that Ã =
[
IR(R−1)/2

O

]
and (also up to a row permutation):

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b̃(1,2)

b̃(1,3)

. . .

b̃(R−1,R)

O · · · · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (3.1)

where b̃(g,h) denotes the column of B̃ involving columns g and h of B, 1� g < h� R. It can be seen that

U in (3.1) has full column rank if and only if B̃ does not have an all-zero column. It follows from (2.4)

that this is equivalent to kB � 2, which is exactly Kruskal’s condition (1.7) in this case. Moreover, it can

be seen that (1.5) holds if kB � 2 and, hence, we have CP uniqueness if and only if kB � 2.
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Suppose next that rA = kA = R − 1. Then we transform A to
[
IR−1 p
O 0

]
without loss of generality.

Since kA = R − 1, the (R − 1)-vector p does not contain any zeros. For R = 5 the matrix U has the

following structure (up to a row permutation):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃(1,2) p2b̃(1,5) −p1b̃(2,5)

b̃(1,3) p3b̃(1,5) −p1b̃(3,5)

b̃(1,4) p4b̃(1,5) −p1b̃(4,5)

b̃(2,3) p3b̃(2,5) −p2b̃(3,5)

b̃(2,4) p4b̃(2,5) −p2b̃(4,5)

b̃(3,4) p4b̃(3,5) −p3b̃(4,5)

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The structure of U for general R is analogous. Let the R(R − 1)/2-vector d̄ have elements d(s,t)

with 1� s < t � R. It can be seen that for each block of J(J − 1)/2 rows, Ud̄ = 0 yields an equation of

the form d(s,t)b̃(s,t) + d(s,R)pt b̃(s,R) − d(t,R)psb̃(t,R) = 0. From Lemma 2.1 it follows that b̃(s,t), b̃(s,R) and

b̃(t,R) are linearly independent if and only if bs, bt and bR are linearly independent. From the structure

of U it then follows that U has full column rank if kB � 3, which is Kruskal’s condition (1.7) in this

case.

However, kB � 3 is not necessary for U to have full column rank. Consider again the example above

with R = 5 and let J � R. Take B randomly sampled from a continuous distribution and set b3 =
b4 + b5. Then kB = 2 but still U has full column rank. This can be seen as follows. Since b1, b2 and b5

are linearly independent, it follows from Lemma 2.1 that the first row block of Ud̄ = 0 yields d(1,2) =
d(1,5) = d(2,5) = 0. Analogously, since the sets {b1, b3, b5}, {b1, b4, b5}, {b2, b3, b5} and {b2, b4, b5} are
linearly independent,we obtain that all coefficients d(s,t) except d(3,4) are zero. The remaining equation

is d(3,4)b̃(3,4) = 0. Since kB = 2 the columns b3 and b4 are not proportional. By (2.4), this implies that

b̃(3,4) /= 0. Therefore, d(3,4) = 0 and U has full column rank.

The reasoning above yields the following sufficient uniqueness condition for the case rA = kA =
R − 1, which is more relaxed than Kruskal’s condition kB � 3.

Lemma 3.3. Let kC = R, rA = kA = R − 1� 2 and kB � 2. If the set {bs, bt , bR} is linearly independent

for some s and t, then U has full column rank and, hence, we have CP uniqueness.

Proof. Without loss of generality, we transform A to
[
IR−1 p
O 0

]
and assume that {b1, b2, bR} is linearly

independent. From Ud̄ = 0 and Lemma 2.1 it follows that d(1,2) = d(1,R) = d(2,R) = 0. Next, observe

that for any u ∈ {3, . . . , R − 1}, either {b1, bu, bR} is linearly independent, or {b2, bu, bR} is linearly

independent, or both. Then Ud̄ = 0 and Lemma 2.1 imply that all coefficients d(u,R) are zero for u =
3, . . . , R − 1. The equations which are left have the form d(u,v)b̃(u,v) = 0. Since kB � 2 it follows that

also the coefficients d(u,v) are zero. Hence, Ud̄ = 0 implies d̄ = 0. Lemma 2.2 then implies that U has

full column rank for any A and B satisfying the assumptions. �

Next, we consider the general case rA = kA � 2. We transform A to

[
IrA P

O O

]
without loss of gen-

erality. Since kA = rA , the matrix P does not contain any zeros. Let P̃ be defined in the same way as

Ã. Then P̃ also does not contain any zeros. This can be seen as follows. Suppose the first element of

p̃(1,2) is zero, i.e., p11p22 = p21p12. Then the columns a3, . . . , arA , p1, p2 are linearly dependent, where

ai denotes column i of IrA . This implies kA ≤ rA − 1, which is a contradiction.

Let B = [B1|B2], where B1 has rA columns and B2 has R − rA columns. We have U = [U1|P̃ � B̃2],
where U1 is the (column-wise) Khatri–Rao product of the columns (g, h) of Ã and B̃ with 1� g � rA
and g < h� R. For R = 6 and rA = 4, the structure of Ã is as follows (up to a row permutation):
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 p21 p22 −p11 −p12 p̃12
1 p31 p32 −p11 −p12 p̃13

1 p41 p42 −p11 −p12 p̃14
1 p31 p32 −p21 −p22 p̃23

1 p41 p42 −p21 −p22 p̃24
1 p41 p42 −p31 −p32 p̃34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where p̃ij = pi1pj2 − pj1pi2. The structure for general R and rA is analogous. It can be seen that for each

block of J(J − 1)/2 rows, Ud̄ = 0 yields an equation of the form

d(s,t)b̃(s,t) +
R∑

h=rA+1

d(s,h)pt,(h−rA)b̃(s,h) −
R∑

h=rA+1

d(t,h)ps,(h−rA)b̃(t,h)

+
R∑

g=rA+1

R∑
h=g+1

d(g,h)(psgpth − ptgpsh)b̃(g,h) = 0, (3.2)

where 1� s < t � rA and (psgpth − ptgpsh) is an element of P̃. Lemma 2.1 implies that the columns of

B̃ in (3.2) are linearly independent if and only if {bs, bt , B2} is linearly independent. Since all elements

of P and P̃ are nonzero, it follows that Ud̄ = 0 implies d̄ = 0when {bs, bt , B2} is linearly independent

for all 1� s < t � rA . The latter is implied by Kruskal’s condition (1.7) which is kB � R − rA + 2 in this

case.

Next, we show that the condition kB � R − rA + 2 can be relaxed. We have the following general-

ization of Lemma 3.3.

Lemma 3.4. Let kC = R, rA = kA � 2 and kB � 2. If the set {bs, bt , B2} is linearly independent for some s

and t, then U has full column rank and, hence, we have CP uniqueness.

Proof. Without loss of generality we transform A to

[
IrA P

O O

]
and assume that {b1, b2, B2} is linearly

independent. We know that Ud̄ = 0 yields equations (3.2) for 1� s < t � rA . As explained above, the

linear independenceof {b1, b2, B2} togetherwith Lemma2.1 implies thatd(1,2) = 0,d(1,h) = d(2,h) = 0

for all h = rA + 1, . . . , R, and d(g,h) = 0 for all rA + 1� g < h� R.

Observe that for any u ∈ {3, . . . , rA}, either {b1, bu, B2} is linearly independent, or {b2, bu, B2} is

linearly independent, or both. It then follows from (3.2) and Lemma 2.1 that all coefficients d(u,h) are

zero for u = 3, . . . , rA and h = rA + 1, . . . , R. The equations that are left have the form d(u,v)b̃(u,v) = 0.

Since kB � 2 it follows that also the coefficients d(u,v) are zero. Lemma 2.2 then implies that U has full

column rank for any A and B satisfying the assumptions. �

Note that, in the proof of Lemma 3.4, the transformation of A to

[
IrA P

O O

]
works for any order of

the columns of A. This implies that the partition of B into B1 and B2 is immaterial. In Lemma 3.4,

we just need one group of R − rA + 2 linearly independent columns in B. This yields the following

result.

Lemma 3.5. Let kC = R, rA = kA � 2 and kB � 2.
If rA + rB � R + 2, then U has full column rank and, hence, we have CP uniqueness. �

The proof of Proposition 3.2 is complete by observing that A and B are interchangeable in Lemma

3.5.
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3.2. Necessary and sufficient CP uniqueness conditions

Above, we saw that if rA = kA = R� 2, then kB � 2 is necessary and sufficient for CP uniqueness.

In this section, we present a necessary and sufficient CP uniqueness condition for the case rA = kA =
R − 1� 2. The case rB = kB = R − 1� 2 is analogous. As before, we assume that C has full column

rank.

First, we show that the condition of Lemma 3.5 is also necessary for U to have full column rank if

rA = kA = R − 1� 2. Numerical experiments show that the condition is not necessary if rA = kA <
R − 1.

Lemma 3.6. Let kC = R, rA = kA = R − 1� 2 and kB � 2.
Then U has full column rank if and only if rB � 3.

Proof. Sufficiency follows from Lemma 3.5. We transform A to
[
IR−1 p
O 0

]
without loss of generality

(see Lemma 2.2). The (R − 1)-vector p does not contain any zeros. Let rB = 2. Then every group of

three columns ofB is linearly dependent. Since kB � 2 every two columns ofB are linearly independent.

Hence, there holds in particular

bR = α
(s)
1 b1 + α

(s)
2 bs for s = 2, . . . , R − 1, (3.3)

where α
(s)
1 /= 0 and α

(s)
2 /= 0. This implies that∣∣∣∣bi1 biR

bj1 bjR

∣∣∣∣ = α
(s)
2

∣∣∣∣bi1 bis
bj1 bjs

∣∣∣∣ for 1� i < j � J, (3.4)

which is equivalent to b̃(1,R) = α
(s)
2 b̃(1,s) for s = 2, . . . , R − 1. It follows that

p2α
(2)
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b̃(1,2)

0
...
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ p3α
(3)
2

⎛⎜⎜⎜⎜⎜⎜⎝

0

b̃(1,3)

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎠+ · · · + pR−1α
(R−1)
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
0

b̃(1,R−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

p2b̃(1,R)

p3b̃(1,R)

...

...

pR−1b̃(1,R)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.5)

Eq. (3.5) shows thenonzeroparts of thefirstR − 1columnsofU and, hence, their lineardependence.

This completes the proof. �

Lemma 3.6 shows that if rA = kA = R − 1� 2, then a necessary condition for non-uniqueness is

rB � 2. Next, we show that rB = 2 is sufficient for non-uniqueness.

Lemma 3.7. Let kC = R, rA = kA = R − 1� 2 and kB � 2.
Then we have CP uniqueness if and only if rB � 3.

Proof. Without loss of generality, we assume that A is transformed to
[
IR−1 p
O 0

]
. From Lemma 3.6 it

follows that non-uniqueness is only possible if rB = 2. Next, we show that this is also sufficient for

non-uniqueness.

Let R = 3 and rB = 2. Since kB � 2, we have b3 = αb1 + βb2 with α /= 0 and β /= 0. This implies

b̃(1,3) = βb̃(1,2) and b̃(2,3) = −αb̃(1,2). Eq. (1.5) reads as

d1d2b̃(1,2) + d1d3p2b̃(1,3) − d2d3p1b̃(2,3) = 0, (3.6)

which is equivalent to
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[d1d2 + d1d3p2β + d2d3p1α]b̃(1,2) = 0. (3.7)

Since kB � 2, the coefficient of b̃(1,2) in (3.7) must be zero. This is always possible with nonzero d1,

d2 and d3. Hence, if rB = 2, condition (1.5) does not hold and we have non-uniqueness.

Next, let R = 4 and rB = 2. Since kB � 2 any two columns of B span its column space. We write

b4 = αb1 + βb2 andb3 = γ b1 + δb2,withαβγ δ /= 0.This impliesb4 = (α − βγ/δ)b1 + (β/δ)b3

and b4 = (β − αδ/γ )b2 + (α/γ )b3. For the columns of B̃, we obtain the following relations.

b̃(1,4) = βb̃(1,2) b̃(2,4) = −αb̃(1,2), (3.8)

b̃(1,4) = (β/δ)b̃(1,3) b̃(3,4) = −(α − βγ/δ)b̃(1,3), (3.9)

b̃(2,4) = (α/γ )b̃(2,3) b̃(3,4) = −(β − αδ/γ )b̃(2,3). (3.10)

Eq. (1.5) yields the equations dsdt b̃(s,t) + dsd4pt b̃(s,4) − dtd4psb̃(t,4) = 0 for 1� s < t � 3. Substi-

tuting (3.8)–(3.10) and using kB � 2 as above, we obtain

d1d2 + d1d4p2β + d2d4p1α = 0, (3.11)

d1d3 + d1d4p3(β/δ) + d3d4p1(α − βγ/δ) = 0, (3.12)

d2d3 + d2d4p3(α/γ ) + d3d4p2(β − αδ/γ ) = 0. (3.13)

If d2 + d4p2β /= 0 and d3 + d4p3(β/δ) /= 0, it follows from (3.11)–(3.12) that

d2[d3d4p1(βγ /δ) + d24p1p3(αβ/δ)] = d3d
2
4p1p2β(α − βγ/δ). (3.14)

Eq. (3.14) is identical to (3.13) multiplied by d4p1(βγ /δ). Hence, Eqs. (3.11) and (3.12) imply Eq.

(3.13) if d4 is nonzero (and d2 + d4p2β /= 0 and d3 + d4p3(β/δ) /= 0). The system (1.5) can be solved

by choosing appropriate nonzero d1 and d4. Then the value of d2 follows from (3.11) and d3 follows

from (3.12). This implies that if rB = 2, condition (1.5) does not hold and we have non-uniqueness.

The proof for the general case R� 4 and rB = 2 is similar. We refer to the equation of (1.5) starting

with dsdt as equation (s, t). From the proof for R = 4 it follows that equations (s, t) and (s, u) imply

equation (t, u). This implies that we only need to consider the equations (1, t) for 2� t � R − 1. The

system (1.5) can be solved by choosing appropriate nonzero d1 and dR. Then the value of dt follows

from equation (1, t), 2� t � R − 1. Hence, we have non-uniqueness. �

3.3. An example

Lemma 3.7 shows that the condition in Proposition 3.2 andU having full column rank are both also

necessary for CP uniqueness when rA = kA = R − 1� 2 and kB � 2.

Ingeneral, however, the conditionof Proposition3.2 andUhaving full columnrankarenotnecessary

for CP uniqueness. A counterexample is provided by Stegeman and Ten Berge [20]. In this example,

A =
⎡⎣1 0 0 1 1

0 1 0 1 2

0 0 1 1 3

⎤⎦ , B =
⎡⎣1 0 0 1 1

0 1 0 1 3

0 0 1 1 5

⎤⎦ , (3.15)

and C = I5. We have rA = kA = 3 and rB = kB = 3. The condition in Proposition 3.2 does not hold,

since rA + rB = 6 is less than R + 2 = 7. Also, the matrix U is 9 × 10 and cannot have full column

rank. Yet, the CP solution is shown to be unique by Stegeman and Ten Berge [20]. This can also be done

using the necessary and sufficient condition (1.5) of Jiang and Sidiropoulos [6].

4. When A and B have rank larger than k-rank

Here, we explore CP uniqueness when C has full column rank and both A and B have rank larger

than k-rank. Our main result is that under these conditions, Kruskal’s condition (1.7) implies that U

has full column rank.
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Theorem 4.1. Let kC = R, rA > kA � 2 and rB > kB � 2.
If kA + kB � R + 2, then U has full column rank and, hence, we have CP uniqueness. �

Theorem 3.1 and Theorem 4.1 together show that if C has full column rank and A and B have k-rank

at least 2, then Kruskal’s condition kA + kB � R + 2 implies that U has full column rank. The latter is

the sufficient uniqueness condition of Jiang and Sidiropoulos [6] and De Lathauwer [2].

Instead of proving Theorem 4.1, we will show the following stronger result. This is the analogue of

Proposition 3.2.

Proposition 4.2. Let kC = R, rA > kA � 2 and rB > kB � 2.
Ifmax(rA + kB, kA + rB) � R + 2, thenU has full column rank and, hence,we have CP uniqueness. �

The condition of Proposition 4.2 is more relaxed than Kruskal’s condition kA + kB � R + 2. Hence,

Proposition 4.2 implies Theorem 4.1.

We present the proof of Proposition 4.2 in Section 4.1. In Section 4.2, we prove necessary and

sufficient conditions for CP uniqueness when kC = R, R − 1 = rA > kA � 2 and kB � 2. Section 4.3

contains an illustrative example.

4.1. Proof of Proposition 4.2

We only prove the uniqueness condition rA + kB � R + 2. The proof of kA + rB � R + 2 is com-

pletely analogous. We assume that R − 1� rA > kA � 2 and kB � 2. Note that rA = R implies kA = R,

and this case has been discussed in Section 3.We simultaneously reorder the columns of A and B such

that the first rA columns of A are linearly independent. Then we transform A to

[
IrA P

O O

]
without loss

of generality. Since kA < rA the matrix P may contain zero elements. Also, the matrix P̃ may contain

zero elements. As in Section 3, we partition B = [B1|B2], where B1 has rA columns and B2 has R − rA
columns, and we write U = [U1|P̃ � B̃2]. The structure of U is the same as in Section 3, except that

some elements of P and P̃may be zero. Using this fact, we obtain the following analogue of Lemma 3.4.

Lemma 4.3. Let kC = R, R − 1� rA > kA � 2 and kB � 2. If the set {bs, bt , B2} is linearly independent for
some s and t, and rows s and t of P and row (s, t) of P̃ contain no zeros, then U has full column rank and,

hence, we have CP uniqueness.

Proof. Without loss of generality we transform A to

[
IrA P

O O

]
and assume that {b1, b2, B2} is linearly

independent, and rows 1 and 2 of P and row (1, 2) of P̃ contain no zeros. The proof is analogous to the

proof of Lemma 3.4.We know thatUd̄ = 0 yields equations (3.2) for 1� s < t � rA . In the equation for

(s, t) = (1, 2) the elements of P and P̃ are nonzero by assumption. As in the proof of Lemma 3.4, the

linear independenceof {b1, b2, B2} togetherwith Lemma2.1 implies thatd(1,2) = 0,d(1,h) = d(2,h) = 0

for all h = rA + 1, . . . , R, and d(g,h) = 0 for all rA + 1� g < h� R.

Observe that for any u ∈ {3, . . . , rA}, either {b1, bu, B2} is linearly independent, or {b2, bu, B2} is

linearly independent, or both. After deleting the termswith a coefficient of d̄ that is zero, the equations

(3.2) for (s, t) = (s, u) with s = 1, 2 and u = 3, . . . , rA are

d(s,u)b̃(s,u) −
R∑

h=rA+1

d(u,h)ps,(h−rA)b̃(u,h) = 0, (4.1)

where the elements ps,(h−rA) are nonzero by assumption. When either {b1, bu, B2} is linearly inde-

pendent, or {b2, bu, B2}, or both, it follows from (4.1) and Lemma 2.1 that all coefficients d(u,h) are

zero for u = 3, . . . , rA and h = rA + 1, . . . , R. The equations of Ud̄ = 0 that are left have the form

d(u,v)b̃(u,v) = 0. Since kB � 2 it follows that also the coefficients d(u,v) are zero. Lemma 2.2 then implies

that U has full column rank for any A and B satisfying the assumptions. �
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As in the case where rA = kA , each row block of Ud̄ = 0 yields an Eq. (3.2) featuring a linear

combination of the columns b̃(s,t) for some 1� s < t � rA , columns b̃(s,h) and b̃(t,h) for all h = rA +
1, . . . , R, andcolumns b̃(g,h) for all rA + 1� g < h� R. Thedifference is thatnowsomeof thesecolumns

maynot appear in the linear combinations due to zero elements ofP or P̃. However, it remains true that

these columns are linearly independent if and only if {bs, bt , B2} is linearly independent (see Lemma

2.1). The latter is implied by kB � R − rA + 2. This yields the following analogue of Lemma 3.5.

Lemma 4.4. Let kC = R, rA > kA � 2 and kB � 2.
If rA + kB � R + 2, then U has full column rank and, hence, we have CP uniqueness. �

The proof of Proposition 4.2 is complete by interchanging A and B in the proof above.

The uniqueness condition of Lemma 4.3 ismore relaxed than the one in Lemma 4.4. This is because,

contrary to the case rA = kA , the transformation ofA to

[
IrA P

O O

]
depends on the order of the columns

of A. The weaker uniqueness condition of Lemma 4.3 allows more subtle interactions between A and

B. In the even weaker condition of U having full column rank, the matrices A and B are even more

intertwined.

An example where the condition of Lemma 4.3 holds but not the conditions in Lemma 4.4 and

Proposition 4.2 is (4.18) in Section 4.3with a1 = b2 = 0. Then rA + kB = kA + rB = 5 and R + 2 = 6.

But the condition in Lemma 4.3 holds as is shown in Section 4.3.

4.2. Necessary and sufficient CP uniqueness conditions

Here, we prove that the condition in Lemma 4.3 is also necessary for CP uniqueness if R − 1 =
rA > kA � 2. First, however, we show that if R − 1 = rA > kA � 2, then the condition in Lemma 4.3 is

necessary for U to have full column rank. This is the analogue of Lemma 3.6. Numerical experiments

show that the condition is not necessary for U to have full column rank if R − 1 > rA > kA � 2. Note

that for rA = R − 1 the matrix P is an (R − 1)-vector p and P̃ does not exist. We assume that the

columns of A and B are simultaneously permuted such that the first R − 1 columns of A are linearly

independent. As before, the analysis for R − 1 = rB > kB � 2 is completely analogous.

Lemma 4.5. Let kC = R, R − 1 = rA > kA � 2 and kB � 2.
Then U has full column rank if and only if for some s and t, the set {bs, bt , bR} is linearly independent

and elements ps and pt of p are nonzero.

Proof. Sufficiency follows from Lemma 4.3. We transform A to
[
IR−1 p
O 0

]
without loss of generality

(see Lemma 2.2). For 1� s < t � R − 1, we define the following sets:

D = {(s, t) : {bs, bt , bR} linearly dependent}, (4.2)

I = {(s, t) : {bs, bt , bR} linearly independent}. (4.3)

The equations of Ud̄ = 0 are given by

d(s,t)b̃(s,t) + d(s,R)pt b̃(s,R) − d(t,R)psb̃(t,R) = 0 (4.4)

for all 1� s < t � R − 1. In the proof below, we assume that the condition of the lemma does not hold

and show that U has linearly dependent columns.

First, we consider the case I = ∅, i.e. all sets {bs, bt , bR} are linearly dependent. As in the proof of

Lemma 3.6 we have in particular

bR = α
(t)
1 b1 + α

(t)
2 bt for t = 2, . . . , R − 1, (4.5)

where α
(t)
1 /= 0 and α

(t)
2 /= 0. The equations of Ud̄ = 0 with coefficients d(1,t) are

d(1,t)b̃(1,t) + d(1,R)pt b̃(1,R) − d(t,R)p1b̃(t,R) = 0 for t = 2, . . . , R − 1. (4.6)
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Eq. (4.5) implies b̃(1,R) = α
(t)
2 b̃(1,t) and b̃(t,R) = −α

(t)
1 b̃(1,t). Hence, (4.6) becomes

[d(1,t) + d(1,R)ptα
(t)
2 + d(t,R)p1α

(t)
1 ]b̃(1,t) = 0 for t = 2, . . . , R − 1. (4.7)

Since kB � 2, the coefficient of b̃(1,t) in (4.7)must be zero. Since kA � 2we have that pt /= 0 for some

t ∈ {2, . . . , R − 1}. Otherwise p is proportional to a column of IR−1 and, hence, kA = 1 would hold.

It follows from (4.7) that we may take d(1,R) nonzero. Each equation is then solved by an appropriate

choice of d(1,t), where the values of d(t,R) are determined by the other equations in Ud̄ = 0. Therefore,

Ud̄ = 0 does not imply d̄ = 0.

In the remaining part of the proof we assume I /= ∅. It follows from (4.4) and Lemma 2.1 that for

(s, t) ∈ I
d(s,t) = d(s,R)pt = d(t,R)ps = pspt = 0, (4.8)

where pspt = 0 holds because we assume that the condition of the lemma does not hold.

Suppose D = ∅. Then (4.8), and in particular pspt = 0, holds for all 1� s < t � R − 1. It follows

that p contains at most one nonzero element, which implies kA � 1. This contradicts kA � 2. In the

remaining part of the proof we assume D /= ∅.
Let (s, t) ∈ I. Without loss of generality we set s = 1 and t = 2. We have (4.8) with (s, t) = (1, 2),

i.e.

d(1,2) = d(1,R)p2 = d(2,R)p1 = p1p2 = 0. (4.9)

The other equations in Ud̄ = 0 involving b1 and b2 are

d(1,u)b̃(1,u) + d(1,R)pub̃(1,R) − d(u,R)p1b̃(u,R) = 0 for u = 3, . . . , R − 1, (4.10)

d(2,u)b̃(2,u) + d(2,R)pub̃(2,R) − d(u,R)p2b̃(u,R) = 0 for u = 3, . . . , R − 1. (4.11)

Observe that for any u ∈ {3, . . . , R − 1}, either (1, u) ∈ I, or (2, u) ∈ I, or both. Hence, it follows

from Lemma 2.1 and (4.10)–(4.11) that d(1,R)d(2,R)pu = 0 for u = 3, . . . , R − 1. Note that it follows

from p1p2 = 0 that pu = 0 for u = 3, . . . , R − 1 implies that p is proportional to a column of IR−1 and,

hence, thatkA = 1. Since the latter contradictskA � 2,wehave thatpu /= 0 for someu ∈ {3, . . . , R − 1}.
Hence, we obtain

d(1,R)d(2,R) = 0. (4.12)

Next, we define

S1 = {u� 3 : (1, u) ∈ I}. (4.13)

It follows from (4.8) that

d(1,u) = d(1,R)pu = d(u,R)p1 = p1pu = 0 for all u ∈ S1. (4.14)

Suppose p1 /= 0 (the case p2 /= 0 is completely analogous). Then p2 = 0, (4.9) implies d(2,R) = 0,

and (4.14) implies pu = 0 for all u ∈ S1. Since kB � 2, it follows from (4.11) that d(2,u) = 0 for u =
3, . . . , R − 1. Equation (4.14) gives d(1,u) = d(u,R) = 0 for all u ∈ S1. We are left with (4.10) for u /∈ S1.

For any such u, we have (1, u) ∈ D. As in (4.5) there holds

bR = α
(u)
1 b1 + α

(u)
2 bu for u /∈ S1, (4.15)

where α
(u)
1 /= 0 and α

(u)
2 /= 0. This implies b̃(1,R) = α

(u)
2 b̃(1,u) and b̃(u,R) = −α

(u)
1 b̃(1,u). Eq. (4.10) now

becomes

[d(1,u) + d(1,R)puα
(u)
2 + d(u,R)p1α

(u)
1 ]b̃(1,u) = 0 for u /∈ S1. (4.16)

Since kB � 2, the coefficient of b̃(1,u) in (4.16) must be zero. Since kA � 2, it follows from pu = 0 for

all u ∈ S1 that pu /= 0 for some u /∈ S1. This implies that for any nonzero d(1,R), Eq. (4.16) can be solved

by an appropriate choice of d(1,u), where the values of d(u,R) are determined by the other equations in

Ud̄ = 0. Therefore, Ud̄ = 0 does not imply d̄ = 0.
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Finally, we consider the case (1, 2) ∈ I with p1 = p2 = 0. As above, Eqs. (4.9)–(4.12) hold.We have

d(1,2) = 0 and without loss of generality we set d(2,R) = 0 so that (4.12) is satisfied. Since kB � 2 it

follows from (4.11) that d(2,u) = 0 for u = 3, . . . , R − 1. As above, Eq. (4.14) should hold. In particular,

d(1,u) = d(1,R)pu = 0 for all u ∈ S1. As in (4.16) we obtain that

d(1,u) + d(1,R)puα
(u)
2 = 0 for u /∈ S1. (4.17)

If pu = 0 for all u ∈ S1, then pu /= 0 for some u /∈ S1 (since kA � 2). For any nonzero d(1,R), Eq. (4.17)

is solved by an appropriate choice of d(1,u). Hence, Ud̄ = 0 does not imply d̄ = 0.

If pu /= 0 for some u ∈ S1, then d(1,R) = 0 follows from (4.14). Eq. (4.17) implies d(1,u) = 0 for all

u /∈ S1. Now we have d(1,u) = d(2,u) = 0 for u = 3, . . . , R and d(1,2) = 0 and p1 = p2 = 0. Hence, the

Eq. (4.4) of Ud̄ = 0 with s = 1, 2 and s < t � R − 1 imply that the corresponding coefficients of d̄

are zero (except d(t,R) since p1 = p2 = 0). It remains to solve the Eq. (4.4) for 3� s < t � R − 1. All

coefficients of d̄ in these equations are yet to be determined. Nowwe can proceed as in the beginning

of this proof, i.e. by defining the sets D and I in (4.2) and (4.3), respectively, for 3� s < t � R − 1.

Note that this amounts to deleting columns b1 and b2 from the equations (4.4). For this smaller set of

equations, we either arrive at the conclusion that U has linearly dependent columns or, as above, we

are left with a still smaller set of the equations (4.4) to solve. If we do not obtain that U has linearly

dependent columns after a number of such iterations, but keep decreasing the number of equations

in (4.4), we will arrive at the situation where I = ∅. When this happens, then after each iteration we

have deleted two columns of b1, . . . , bR−1 from the equations for which the corresponding elements

in p are zero. Since kA � 2 the vector p should have at least two nonzero elements. Hence, if we end up

with I = ∅ there are at least the columns bs, bt and bR left, for some 1� s < t � R − 1. It follows that

D contains at least (s, t). As we have shown in the beginning of this proof the case I = ∅ and D /= ∅
yields a U with linearly dependent columns. This completes the proof. �

Lemma 4.5 shows that if R − 1 = rA > kA � 2, then a necessary condition for non-uniqueness is

that the condition of Lemma 4.3 does not hold. Next, we show that this is also sufficient for non-

uniqueness.

Lemma 4.6. Let kC = R, R − 1 = rA > kA � 2 and kB � 2.
Then we have CP uniqueness if and only if for some s and t, the set {bs, bt , bR} is linearly independent

and elements ps and pt of p are nonzero.

Proof. We simultaneously reorder the columns of A and B such that the first R − 1 columns of A are

linearly independent. Without loss of generality, we transform A to
[
IR−1 p
O 0

]
. We assume that the

condition of the lemma does not hold. The Eq. (1.5) are dsdt b̃(s,t) + dsdRpt b̃(s,R) − dtdRpsb̃(t,R) = 0

with 1� s < t � R − 1. We refer to the equation starting with dsdt as equation (s, t).
The conditions of the lemma imply R� 4. We have R − 1 = rA > kA � 2. When p does not contain

any zeros, it follows that kA = rA .Whenp containsmore thanR − 3 zeros, it is either all-zero (implying

kA = 0) or it is proportional to a column of IR−1 (implying kA = 1). Hence, the number of zeros in the

vectorp is between1 andR − 3.Weassumewithout loss of generality that only thefirst x elements ofp

are zero. Since the condition of the lemmadoes not hold, all sets {bs, bt , bR}with x + 1� s < t � R − 1

must be linearly dependent and, since kB � 2, the rank of {bx+1, . . . , bR} equals 2. The proof of Lemma

3.7 then shows that equations (s, t)with x + 1� s < t � R − 1 can be solved for nonzero dx+1, . . . , dR.
Since p1 = · · · = px = 0 the remaining equations are solved for d1 = · · · = dx = 0. Hence, condition

(1.5) does not hold and we have non-uniqueness. �

4.3. An example

Lemma 4.6 applies to the 3 × 3 × 4 example of Ten Berge and Sidiropoulos [24], that motivated

the analysis of Jiang and Sidiropoulos [6]. In this example, R = 4, C = I4 and
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A =
⎡⎣1 0 0 a1
0 1 0 a2
0 0 1 a3

⎤⎦ , B =
⎡⎣1 0 0 b1
0 1 0 b2
0 0 1 b3

⎤⎦ . (4.18)

Ten Berge and Sidiropoulos [24] show that if the fourth columns of A and B have a zero in different

rows, then the CP solution is essentially unique, and if the zeros appear in the same row it is not unique.

Using Lemma 4.6, this can be explained as follows. Suppose a1 = b2 = 0. Then {b2, b3, b4} is linearly
independent and a2a3 /= 0. Hence, the condition of Lemma 4.3 holds and we have CP uniqueness.

Suppose next that a1 = b1 = 0. Then any linearly independent set {bs, bt , b4} must include b1. But

a1 = 0 and, hence, the condition of Lemma 4.3 does not hold. CP non-uniqueness now follows from

Lemma 4.6. The same example was discussed in Jiang and Sidiropoulos [6] using condition (1.5).

5. Uniqueness in Indscal

We consider the Indscal model as the CPmodel (1.1)–(1.2) for an I × I × K array X with symmetric

I × I slices Xk , and the constraint A = B imposed (actually, A and B having proportional columns is

enoughdue to the scaling indeterminacy). This constraint is imposed to ensure that the Indscal solution

has symmetric slices. However, it is mostly inactive, i.e., the unrestricted CP solution of an array with

symmetric slices often has the columns of A and B proportional (see Ten Berge and Kiers [23], and Ten

Berge et al. [25]). The Indscal model was introduced by Carroll and Chang [1].

Kruskal’s condition (1.3) for essential uniqueness in the Indscal case is

2kA + kC � 2R + 2. (5.1)

Note that Kruskal’s condition (5.1) also excludes alternative solutions with the columns of A and B

not being proportional. As for CP, we consider the case where C has full column rank. Then Kruskal’s

condition becomes

2kA � R + 2. (5.2)

An alternative and more relaxed Indscal uniqueness condition can be obtained using the approach

of Jiang and Sidiropoulos [6]. Namely, if kC = R, then the Indscal solution (A, C) is essentially unique

if and only if

(A � A)d is not of the form (f ⊗ f) for any d with ω(d) � 2, (5.3)

where d = (d1, . . . , dR)
T . Note that (5.3) is analogous to (1.4). As for CP, condition (5.3) is equivalent to

(1.5) with U = Ã � Ã. However, in the Indscal case the matrix U contains more redundant rows than

for CP, as was noted by Stegeman et al. [21]. After these redundant rows have been deleted fromU, the

matrix is vertical or square if and only if

I(I − 1)

4

(
I(I − 1)

2
+ 1

)
−
(
I

4

)
�

R(R − 1)

2
, (5.4)

where the term
(
I
4

)
only appears if I � 4. Stegeman et al. [21] give a partial proof of the condition (5.4)

being sufficient for U having full column rank almost surely when A is randomly sampled from an

IR-dimensional continuous distribution.

In Section 5.1 below, we present the Indscal versions of the CP uniqueness results from Sections 3

and 4. Section 5.2 contains a necessary and sufficient Indscal uniqueness condition for the case kC = R,

rA = R − 1 and kA � 2.

5.1. Kruskal’s condition and U for Indscal

The CP uniqueness results from Sections 3 and 4 can be translated to the Indscal case by setting

A = B. Our main result is that Kruskal’s condition (5.2) implies that U = Ã � Ã has full column rank.

Theorem 5.1. Let kC = R and kA � 2.
If 2kA � R + 2, then U = Ã � Ã has full column rank and, hence, we have Indscal uniqueness. �
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However, we are able to obtain the following stronger Indscal uniqueness result.

Proposition 5.2. Let kC = R and kA � 2.
If rA + kA � R + 2, then U = Ã � Ã has full column rank and, hence, we have Indscal uniqueness.

Proof. If rA = kA , the proof follows from Proposition 3.2 with A = B. If rA > kA , the proof follows

from Proposition 4.2 with A = B. �

Since the k-rank of a matrix cannot be larger than its rank, Proposition 5.2 implies Theorem 5.1.

If rA > kA , then the uniqueness condition of Proposition 5.2 is more relaxed than Kruskal’s condition

(5.2). However, in this case an even weaker uniqueness condition is provided by the analogue of

Lemma 4.3 presented as Lemma 5.3 below. We assume the columns of A are ordered such that the

first rA columns are linearly independent. Without loss of generality we transform A to

[
IrA P

O O

]
. Let

ek denote a column of IrA .

Lemma 5.3. Let kC = R and rA > kA � 2. If the set {es, et , P} is linearly independent for some s and t, and

rows s and t of P and row (s, t) of P̃ contain no zeros, then U has full column rank and, hence, we have

Indscal uniqueness. �

An example A for which the condition in Lemma 5.3 holds but not the condition in Proposition 5.2

is

A =
⎡⎢⎢⎣
1 0 0 0 1 1

0 1 0 0 1 2

0 0 1 0 1 3

0 0 0 1 0 4

⎤⎥⎥⎦ . (5.5)

Indeed, we have rA = 4, kA = 3 and R + 2 = 8. But the set {e1, e2, P} is linearly independent, the

first two rows of P contain no zeros and row (1, 2) of P̃ equals 1.

5.2. Necessary and sufficient Indscal uniqueness conditions

Here, we give some necessary and sufficient Indscal uniqueness conditions. First, we consider the

case where A has full column rank.

Lemma 5.4. Let kA = R. Then we have Indscal uniqueness if and only if kC � 2.

Proof. Analogous to (1.4) we have Indscal uniqueness if and only if (A � C)d is not of the form (f ⊗ g)
for any d with ω(d) � 2. This is equivalent to (1.5) with U = Ã � C̃. As we showed below (3.1), this

holds if kC � 2. The proof is complete by observing that kC � 2 is necessary for CP or Indscal uniqueness

(see e.g. Stegeman and Sidiropoulos [22]). �

Note that the condition of Lemma 5.4 is identical to Kruskal’s condition (5.1) in this case. Next, we

consider the case where C has full column rank. We have the following analogue of Lemmas 3.7 and

4.6.

Lemma 5.5. Let kC = R, rA = R − 1 and kA � 2.
Then we have Indscal uniqueness if and only if kA � 3.

Proof. Since rA + kA � R − 1 + 3 = R + 2, sufficiency follows from Proposition 5.2. Next, we show

that kA = 2 implies non-uniqueness. We permute the columns of A such that the first R − 1 columns
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are linearly independent. Without loss of generality we transform A to
[
IR−1 p
O 0

]
. For U = Ã � Ã, Eq.

(1.5) is

dsdt + dsdRp
2
t + dtdRp

2
s = 0, 1� s < t � R − 1, (5.6)

dsdRpgph = 0, g, h /= s, g /= h, 1� s� R − 1. (5.7)

Since kA = 2 the vector p contains only two nonzero elements, say p1 and p2. It can be verified that

(5.6)–(5.7) are satisfied if d3 = · · · = dR−1 = 0 and

d1d2 + d1dRp
2
2 + d2dRp

2
1 = 0. (5.8)

Since there always exist nonzero d1, d2 and dR such that equation (5.8) holds, condition (1.5) does

not hold and, hence, we have non-uniqueness. �

Lemma 5.5 shows that the condition of Proposition 5.2 is also necessary for Indscal uniqueness if

rA = R − 1. This also shows that the conditions of Proposition 5.2 and Lemma 5.3 are equivalent for

rA = R − 1.

When A is transformed to a matrix with many zeros, the matrix U = Ã � Ã also has many zeros.

This makes it easier to analyze Indscal uniqueness than CP uniqueness.

6. Discussion

In this paper, we studied the essential uniqueness of CP and Indscal decompositions when com-

ponent matrix C has full column rank. We analyzed the relation between Kruskal’s [11] uniqueness

condition and the recent uniqueness conditions of Jiang and Sidiropoulos [6] and De Lathauwer [2].

It is known that for random (A, B) the almost sure uniqueness condition of De Lathauwer [2] is more

relaxed than Kruskal’s condition. And it is generally believed that this is also true for non-random

(A, B), although a proof has not been provided. Themain contribution of our paper is that we provided

this proof. In particular, we showed that Kruskal’s condition implies that the matrix U of Jiang and

Sidiropoulos [6] has full column rank,whichmakes the latter aweaker sufficient uniqueness condition.

Moreover, we obtained new Kruskal-type uniqueness conditions for CP and Indscal (Propositions 3.2,

4.2 and 5.2) that are weaker than Kruskal’s condition but stronger than U having full column rank.

Also, we obtained weaker uniqueness conditions (Lemmas 4.3 and 5.3) by allowing (for CP) more

subtle interactions between the component matrices A and B. For the case rA = R − 1, we proved

several necessary and sufficient uniqueness conditions for CP and Indscal (Lemmas 3.7, 4.6 and 5.5).

These are equivalent to U having full column rank. The results are not difficult to extend to the case

rA = R − 2. However, this requires tedious analysis of all possible dependencies in the columns of A

andB.Weexpect that for rA � R − 2necessary and sufficient CPuniqueness conditions canbeobtained

that are weaker than U having full column rank.

In our analysis, we have confined ourselves to the real-valued CP and Indscal decompositions.

However, our proofs can easily be adapted to the complex-valued CP and Indscal decompositions. A

proof of Kruskal’s uniqueness condition for complex-valued CP can be found in Sidiropoulos and Bro

[13]. The necessary and sufficient uniqueness condition of Jiang and Sidiropoulos [6] and the condition

of U having full column rank are also valid for the complex-valued CP decomposition.

Stegeman and Ten Berge [20] give two examples of unique CP solutions (3 × 3 × 5 with R = 5

and 3 × 4 × 6 with R = 6) with the ranks and k-ranks of A, B and C being equal, that do not satisfy

Kruskal’s uniqueness condition. Since C has full column rank, these examples are within the scope of

our analysis. However, in both cases the CP uniqueness condition of Proposition 3.2 does not hold. In

the first example the matrix U is 9 × 10 and it cannot have full column rank. In the second example

U is 18 × 15 and it follows from De Lathauwer [2] that U has full column rank almost surely when A

and B are randomly sampled from an (I + J)R-dimensional continuous distribution. To include these

examples in our analysis requires an extension of Lemma 3.7 to the case rA = R − 2.

Contrary to CP, we have not found unique Indscal solutions for which the matrix U = Ã � Ã has

linearly dependent columns. This raises the questionwhether such Indscal solutions exist, i.e., whether
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Uhaving full columnrank is alsonecessary for Indscal uniqueness. Further research isneeded toanswer

this question.
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